If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2x-6)=2(4-3x-x^2)
We move all terms to the left:
x(2x-6)-(2(4-3x-x^2))=0
We multiply parentheses
-(2(4-3x-x^2))+2x^2-6x=0
We calculate terms in parentheses: -(2(4-3x-x^2)), so:We add all the numbers together, and all the variables
2(4-3x-x^2)
We multiply parentheses
-2x^2-6x+8
Back to the equation:
-(-2x^2-6x+8)
2x^2-(-2x^2-6x+8)-6x=0
We get rid of parentheses
2x^2+2x^2+6x-6x-8=0
We add all the numbers together, and all the variables
4x^2-8=0
a = 4; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·4·(-8)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*4}=\frac{0-8\sqrt{2}}{8} =-\frac{8\sqrt{2}}{8} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*4}=\frac{0+8\sqrt{2}}{8} =\frac{8\sqrt{2}}{8} =\sqrt{2} $
| -4(5+3n)=-68 | | -7/3=1/3x | | 5/4(8p+12)+2P=51 | | 3(x+2)-5(2x+7)=-8 | | 13-10x+4=27 | | -3(x-5)+8=x+20+3x-15 | | 4(2x+5)+2x=10 | | 9a+6=20.2 | | p/12=56/84 | | 2(4w+8)=60 | | 14.25=x−19.15−4.91.3433.434 | | 23=18-5b | | 990+2.0+x=180 | | 3x+11=2(5x-3)+7 | | 3(m-62)=66 | | 6.5+1.8+x=180 | | t(10)=-20 | | 4.6.5+1.8+x=180 | | 2x^2=x^2-25 | | 65/(x^2+2x-15)=0 | | –11+12y=10y+9(–20y+19) | | x–4=–9+x | | 3(4+x)=4x+12 | | 800-(200)/x^2=0 | | -4x+15=-7/2x+12 | | 20x-80=32 | | -n+17=42 | | 15x+5+22x+4+120=60 | | 4x-8=4x-5 | | 15x+5+22x+4+120=90 | | 12.8+(-12.6)=x | | 17x-238x-43x+17=180 |